361 research outputs found

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major challenges in currently chemotherapeutic theme is lacking effective biomarkers for drug response and sensitivity. Our current study focus on two promising biomarkers, ERCC1 (excision repair cross-complementing group 1) and BRCA1 (breast cancer susceptibility gene 1). To investigate their potential role in serving as biomarkers for drug sensitivity in cancer patients with metastases, we statistically measure the mRNA expression level of ERCC1 and BRCA1 in tumor cells isolated from malignant effusions and correlate them with cisplatin and/or docetaxel chemosensitivity.</p> <p>Methods</p> <p>Real-time quantitative PCR is used to analysis related genes expression in forty-six malignant effusions prospectively collected from non-small cell lung cancer (NSCLC), gastric and gynecology cancer patients. Viable tumor cells obtained from malignant effusions are tested for their sensitivity to cisplatin and docetaxel using ATP-TCA assay.</p> <p>Results</p> <p>ERCC1 expression level is negatively correlated with the sensitivity to cisplatin in NSCLC patients (P = 0.001). In NSCLC and gastric group, BRCA1 expression level is negatively correlated with the sensitivity to cisplatin (NSCLC: P = 0.014; gastric: P = 0.002) while positively correlated with sensitivity to docetaxel (NSCLC: P = 0.008; gastric: P = 0.032). A significant interaction is found between ERCC1 and BRCA1 mRNA expressions on sensitivity to cisplatin (P = 0.010, n = 45).</p> <p>Conclusion</p> <p>Our results demonstrate that ERCC1 and BRCA1 mRNA expression levels are correlated with <it>in vitro </it>chemosensitivity to cisplatin and/or docetaxel in malignant effusions of NSCLC and gastric cancer patients. And combination of ERCC1 and BRCA1 may have a better role on predicting the sensitivity to cisplatin than the single one is considered.</p

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Discomfort in children undergoing unsedated MRI

    Get PDF
    Magnetic resonance imaging (MRI) scans for research purposes usually do not directly benefit the children scanned, so that review boards need to assess whether the risk of harm or discomfort is minimal. This study aimed at providing empirical data on discomfort related to unsedated MRI in children aged 5–12 years. Secondary objectives were to determine whether lower age is associated with higher levels of discomfort and to investigate which other characteristics of subjects and/or procedures may be associated with higher levels of discomfort. Self-report scores, observation scores, heart rate standard deviation scores, and incremental salivary cortisol levels were obtained from 54 children aged 5–12 years with non-acute conditions undergoing diagnostic MRI. Of the 54 children, 10 scored relatively high values on the self-report score and on one or two of the other measures, and another 15 scored relatively high on the self-report score alone. Rather than an age effect, associations were found between parents’ trait anxiety and observation score values and between use of contrast fluid (requiring the insertion of a venous cannula) and high incremental salivary cortisol levels. In conclusion, MRI-related discomfort may be regarded as minimal for more than half of children aged 5–12
    corecore